Skip to content

Tutorials

Overview

This page introduces several tools and dataset in JARVIS though examples. In addition to the following examples, the Colab notebooks and pytests modules can be helpful to get use JARVIS-DB and JARVIS-Tools.

DFT

Running calculations

The JARVIS-Tools (install using "pip install -U jarvis-tools") curretly allows to run DFT calculations with VASP and QE software. The JARVIS-DFT is mainly based on the VASP software but soon there would be datasets with QE and Wien2K asl well. We can create for example a VaspJob with the help of atomic structure, input parameters, pseudopotential, k-points information. Similar to many other modules VaspJob allows to 'ToDict' and 'FromDict' methods to store or load a complete job, which is very useful in scaling up VASP related calculations and enhancing reproducibilty. Make sure VASP_PSP_DIR is declared as a PATH to VASP pseudopotential directory i.e. export VASP_PSP_DIR=YOUR_PATH_TO_PSUEDOPTENTIALS in your ~/.bashrc file. The input file generation and output file parsing modules for VASP can be found in jarvis.io.vasp.inputs and jarvis.io.vasp.outputs modules. Example-1: We start by setting up and submitting a single VaspJob:

from jarvis.tasks.vasp.vasp import VaspJob, write_vaspjob
from jarvis.io.vasp.inputs import Potcar, Incar, Poscar
from jarvis.db.jsonutils import dumpjson
from jarvis.core.atoms import Atoms
from jarvis.core.kpoints import Kpoints3D
from jarvis.tasks.queue_jobs import Queue
import os

# Load/build crystal structure
# mat = Poscar.from_file('POSCAR')
coords = [[0, 0, 0], [0.25, 0.25, 0.25]]
elements = ["Si", "Si"]
box = [[2.715, 2.715, 0], [0, 2.715, 2.715], [2.715, 0, 2.715]]
atoms = Atoms(lattice_mat=box, coords=coords, elements=elements)
mat = Poscar(atoms)
mat.comment = "Silicon"

# Build INCAR file
data = dict(
    PREC="Accurate",
    ISMEAR=0,
    SIGMA=0.01,
    IBRION=2,
    ISIF=3,
    GGA="BO",
    PARAM1=0.1833333333,
    PARAM2=0.2200000000,
    LUSE_VDW=".TRUE.",
    AGGAC=0.0000,
    EDIFF="1E-7",
    EDIFFG="-1E-3",
    NELM=400,
    ISPIN=2,
    LCHARG=".FALSE.",
    LVTOT=".FALSE.",
    LVHAR=".FALSE.",
    LWAVE=".FALSE.",
)
inc = Incar(data)
# Build POTCAR info
# export VASP_PSP_DIR = 'PATH_TO_YOUR_PSP'
pot = Potcar(elements=mat.atoms.elements)

# Build Kpoints info
kp = Kpoints3D().automatic_length_mesh(
    lattice_mat=mat.atoms.lattice_mat, length=20
)

vasp_cmd = "/users/knc6/VASP/vasp54/src/vasp.5.4.1DobbySOC2/bin/vasp_std"
copy_files = ["/users/knc6/bin/vdw_kernel.bindat"]
jobname = "MAIN-RELAX@JVASP-1002"
job = VaspJob(
    poscar=mat,
    incar=inc,
    potcar=pot,
    kpoints=kp,
    vasp_cmd=vasp_cmd,
    copy_files=copy_files,
    jobname=jobname,
)

dumpjson(data=job.to_dict(), filename="job.json")
write_vaspjob(pyname="job.py", job_json="job.json")


The job.py can now be run on a cluster or on a PC as a python script. For running this job on a PBS cluster,

submit_cmd = ["qsub", "submit_job"]
# Example job commands, need to change based on your cluster
job_line = (
    "source activate my_jarvis \n"
    + "python job.py"
)
name = "TestJob"
directory = os.getcwd()
Queue.pbs(
    job_line=job_line,
    jobname=name,
    directory=directory,
    submit_cmd=submit_cmd,
    )


Currently, JARVIS-Tools can be used to submit job with SLURM and PBS clusters only. For high-throughput automated submissions one can use pre-build JobFactory module that allows automatic calculations for a series of properties. Example-2:


from jarvis.tasks.vasp.vasp import VaspJob,write_jobfact_optb88vdw
from jarvis.io.vasp.inputs import Potcar, Incar, Poscar
from jarvis.db.jsonutils import dumpjson
from jarvis.core.atoms import Atoms
from jarvis.core.kpoints import Kpoints3D
from jarvis.tasks.queue_jobs import Queue
import os
from jarvis.tasks.vasp.vasp import JobFactory,write_jobfact_optb88vdw

# Load/build crystal structure
# mat = Poscar.from_file('POSCAR')
coords = [[0, 0, 0], [0.25, 0.25, 0.25]]
elements = ["Si", "Si"]
box = [[2.715, 2.715, 0], [0, 2.715, 2.715], [2.715, 0, 2.715]]
atoms = Atoms(lattice_mat=box, coords=coords, elements=elements)
mat = Poscar(atoms)
mat.comment = 'bulk@Silicon'

vasp_cmd = "/users/knc6/VASP/vasp54/src/vasp.5.4.1DobbySOC2/bin/vasp_std"
copy_files = ['/users/knc6/bin/vdw_kernel.bindat']
jobname = "MAIN-RELAX@JVASP-1002"
job = JobFactory(
    vasp_cmd=vasp_cmd,
    poscar=mat,
    copy_files=copy_files,
)

dumpjson(data=job.to_dict(), filename='job_fact.json')
write_jobfact_optb88vdw(pyname="job_fact.py", job_json="job_fact.json")

We can now submit the JobFactory as:

from jarvis.tasks.queue_jobs import Queue
import os
submit_cmd=["qsub", "submit_job"]
# Example job commands, need to change based on your cluster
job_line = "source activate my_jarvis \n"+"python job_fact.py"
name = "TestJob"
directory = os.getcwd()
Queue.pbs(
    job_line=job_line,
    jobname=name,
    directory=directory,
    submit_cmd=submit_cmd,
)


This script first converges K-pints and plane-wave cutoff, then using the converged paramerters optimizes the simulation cell, and then runs several jobs for calculating properties such as bandstructure on high-symmetry k-points, elastic constanats, optoelectronic properties etc.

Next, let's see how to run High-throughput jobs for multiple IDs: Example-3:

from jarvis.tasks.vasp.vasp import (
    JobFactory,
    VaspJob,
    GenericIncars,
    write_jobfact,
)
from jarvis.io.vasp.inputs import Potcar, Incar, Poscar
from jarvis.db.jsonutils import dumpjson
from jarvis.db.figshare import data
from jarvis.core.atoms import Atoms
from jarvis.tasks.queue_jobs import Queue
import os

##############################################################################
# Make sure you have latest version of jarvis-tools, pip install -U jarvis-tools
# Specify your vasp_cmdcluster type etc. info here
# VASP_PSP_DIR should be defined in the PATH as pseudopotential directory

vasp_cmd = "mpirun /users/knc6/VASP/vasp54/src/vasp.5.4.1DobbySOC2/bin/vasp_std"

# Change to your path of .bindat file
copy_files = ["/users/knc6/bin/vdw_kernel.bindat"]

submit_cmd = ["qsub", "submit_job"]

# For slurm
# submit_cmd = ["sbatch", "submit_job"]
##############################################################################
def get_atoms(jid="", mpid="", oqmd_id="", aflow_id=""):
    """
    Provide only one of these IDs.
    Examples:
    jid='JVASP-1002' or mpid='mp-149' or
    oqmd_id='10215', or aflow_id='48708a4622918820'
    """
    if mpid != "":
        mp = data("mp_3d")
        for i in mp:
            if i["id"] == mpid:
                atoms = Atoms.from_dict(i["atoms"])
                del mp
                return atoms
    if jid != "":
        jv = data("dft_3d")
        for i in jv:
            if i["jid"] == jid:
                atoms = Atoms.from_dict(i["atoms"])
                del jv
                return atoms
    if oqmd_id != "":
        oq = data("oqmd_3d")
        for i in oq:
            if i["id"] == oqmd_id:
                atoms = Atoms.from_dict(i["atoms"])
                del oq
                return atoms
    if aflow_id != "":
        af1 = data("aflow1")
        for i in af1:
            if i["id"] == aflow_id:
                atoms = Atoms.from_dict(i["atoms"])
                del af1
                return atoms
        af2 = data("aflow2")
        for i in af2:
            if i["id"] == aflow_id:
                atoms = Atoms.from_dict(i["atoms"])
                del af2
                return atoms


# If a user wants to run on its on ,aterials
# atoms = Poscar.from_file('YourPOSCAR')
# and send it to atoms in the script below
# Select/desect you want to run
# More detais in
# https://github.com/usnistgov/jarvis/blob/master/jarvis/tasks/vasp/vasp.py#L81
steps = [
    "ENCUT",
    "KPLEN",
    "RELAX",
    "BANDSTRUCT",
    "LOPTICS",
    "MBJOPTICS",
    "ELASTIC",
]
incs = GenericIncars().optb88vdw().incar.to_dict()


# List of materials divided into chunks of 50


ids = ["JVASP-1002", "JVASP-1067"]


for id in ids:
    atoms = get_atoms(jid=id)
    mat = Poscar(atoms)
    mat.comment = "bulk@" + str(id)
    cwd_home = os.getcwd()
    dir_name = id + "_" + str("PBEBO")
    if not os.path.exists(dir_name):
        os.makedirs(dir_name)
    os.chdir(dir_name)
    job = JobFactory(
        vasp_cmd=vasp_cmd,
        poscar=mat,
        steps=steps,
        copy_files=copy_files,
        use_incar_dict=incs,
    )

    dumpjson(data=job.to_dict(), filename="job_fact.json")
    write_jobfact(
        pyname="job_fact.py",
        job_json="job_fact.json",
        input_arg="v.step_flow()",
    )

    # Example job commands, need to change based on your cluster
    job_line = (
        "source ~/anaconda2/envs/my_jarvis/bin/activate my_jarvis \n"
        + "python job_fact.py"
    )
    name = id
    directory = os.getcwd()
    Queue.pbs(
        job_line=job_line,
        jobname=name,
        directory=directory,
        submit_cmd=submit_cmd,
    )
    os.chdir(cwd_home)

    """
    # For Slurm clusters
    Queue.slurm(
        job_line=job_line,
        jobname=name,
        directory=directory,
        submit_cmd=submit_cmd,
    )
    os.chdir(cwd_home)
    """

In the above examples, use Queue.slurm if you want to use SLURM instead of TORQUE/PBS submission. A complete example of such run is available at: VASP example

Post-processing and plotting

There are a variety of post-processing analysis and plotting that can be done on the output data. A common example would be plotting electronic density of states and bandstructure as follows:

from jarvis.io.vasp.outputs import Vasprun
# %matplotlib inline
import matplotlib.pyplot as plt
plt.switch_backend('agg')
vrun = Vasprun('vasprun.xml')
energies, spin_up, spin_dn=vrun.total_dos
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 22})
plt.plot(energies,spin_up,label='Spin-up')
plt.plot(energies,spin_dn,label='Spin-down')
plt.xlabel('Energy(E-Ef)')
plt.ylabel('DOS(arb.unit)')
plt.xlim(-4,4)
plt.legend()

vrun.get_bandstructure(kpoints_file_path='KPOINTS')

There are many other analysis modules available such as: scanning tunneling microscopy images, solar-cell efficiency, topological spin- orbit spillage, transport properties, phonons, infrared intensities, and its continously expanding.

Developing database

After generating the results, we can store the metadata in JARVIS-API. Please request an account if you haven't made it yet. Following the calculation protocal mentioned above, the generated files can be converted to an XML datafile which with the help of an XSD schema can be converted to nice-looking HTML files with the help of XSLT programming and a bit of javascript.

We alreay provide modules to convert the calculation informato to XML and module to upload data. An example is give below:

from jarvis.db.vasp_to_xml import VaspToApiXmlSchema 
from jarvis.db.restapi import Api
folder="/home/users/knc6/Software/jarvis/jarvis/examples/vasp/SiOptB88vdW"
filename = "JVASP-1002.xml"
VaspToApiXmlSchema(folder=folder).write_xml(filename=filename)
a = Api(user_info_file_path="/users/knc6/myinfo")
# First line should be your username and secondline your password
tid="5f626925ece4b00035e5277f"
# Find latest template ID with title "jarvisdft"  at the bottom of the page 
# https://jarvis.nist.gov/rest/template-version-manager/global
a.upload_xml_file(filename='JVASP-1067.xml',template_id=tid)

FF

Molecular dynamics/classical force-field calculations can be carried out with LAMMPS software as in JARVIS-FF. An example for running LAMMPS is given below. Here, a LammpsJob module is defined with the help of atoms, pair-style, coefficient, and template file (*.mod file) to control the calculations.

Running calculations

from jarvis.tasks.lammps.lammps import LammpsJob, JobFactory
from jarvis.core.atoms import Atoms
from jarvis.db.figshare import get_jid_data
from jarvis.analysis.structure.spacegroup import Spacegroup3D


# atoms = Atoms.from_poscar('POSCAR')
# Get Aluminum FCC
tmp_dict = get_jid_data(jid="JVASP-816", dataset="dft_3d")["atoms"]
atoms = Atoms.from_dict(tmp_dict)
# Get conventional cell
spg = Spacegroup3D(atoms)
cvn_atoms = spg.conventional_standard_structure
ff = "/users/knc6/Software/LAMMPS/lammps-master/potentials/Al_zhou.eam.alloy"
mod = "/users/knc6/Software/Devs/jarvis/jarvis/tasks/lammps/templates/inelast.mod"
cmd = "/users/knc6/Software/LAMMPS/lammps-master/src/lmp_serial<in.main>out"
parameters = {
    "pair_style": "eam/alloy",
    "pair_coeff": ff,
    "atom_style": "charge",
    "control_file": mod,
}
# Test LammpsJob
lmp = LammpsJob(
    atoms=cvn_atoms, parameters=parameters, lammps_cmd=cmd, jobname="Test"
).runjob()

# Test high-throughput
job_fact = JobFactory(pair_style="eam/alloy", name="my_first_lammps_run")
job_fact.all_props_eam_alloy(atoms=cvn_atoms, ff_path=ff, lammps_cmd=cmd)

The above lines can be written on a file such as job.py and can be run on a PC or a cluster with the from jarvis.tasks.queue_jobs import Queue module.

Post-processing and plotting

Important quantities such asn total energy, forces etc. can be obtained with the help of jarvis.io.lammps.outputs module.

from jarvis.io.lammps.outputs import parse_material_calculation_folder
folder = '/home/users/knc6/Software/jarvis/jarvis/examples/lammps/Aleam'
data = parse_material_calculation_folder(folder)

Developing database

The calculation data can now be converted into XML files as follows:

from jarvis.db.lammps_to_xml import write_xml
write_xml(data=data,filename='lmp.xml')

ML/AI

Currently JARVIS-ML allows prediction of material properties with machine learning. The materials information is converted into descriptors using Classical Force-field Inspired Descriptors (CFID) or Coulomb materix. Other descriptors and graph based predictions would be available soon also. For a series of atomistic structures, we can convert them into CFID, which act as input matrix.

Running calculations

Suppose we have 40000 materials, and we get 1557 descriptor for each material, we will have a 40000x1557 matrix. Let's call this matrix as 'x' or input matrix. Next, we can get target ('y') data either from DFT, FF calculations or experiments. For example, we can choose formation energies of 40000 materials in the JARVIS-DFT as the dtarget data giving 40000x1 matrix.

Now, we can use a ML/AI algorithm to establish statistical relation between the x and y data. Once trained we get a trained model, which can be stored in say pickle or joblib format.

For a new material now, it can be converted into CFID i.e. 1x1557 matrix which when fed to the model will give 1x1 prediction hence the ML prediction. We can use a range of ML algorithms such as linear regression, decision trees, Gaussian processes etc. We find with CFID descriptors, gradient boosting decision trees (especially in LightGBM) gives one of the most accurate results. We provide tools to run with major ML packages such as scikit-learn, tensorflow, pytorch, lightgbm etc. Example-1:

# An example of JARVIS-ML training
from jarvis.ai.pkgs.utils import get_ml_data
from jarvis.ai.pkgs.utils import regr_scores
X,y,jid=get_ml_data()
#Formation energy for 3D materials, you can choose other properties/dataset as well
import lightgbm as lgb
from sklearn.model_selection import train_test_split
lgbm = lgb.LGBMRegressor(device= 'gpu',n_estimators= 1170,learning_rate= 0.15375236057119931,num_leaves= 273)       
X_train, X_test, y_train, y_test, jid_train, jid_test = train_test_split(X, y, jid, random_state=1, test_size=.1)
lgbm.fit(X_train,y_train)
pred = lgbm.predict(X_test)
reg_sc = regr_scores(y_test, pred)
print (reg_sc['mae'])

Another full example for regression Example-2:

from jarvis.ai.pkgs.lgbm.regression import parameters_dict
from scipy.stats import median_absolute_deviation as mad
from jarvis.ai.pkgs.utils import get_ml_data
import lightgbm as lgb
import numpy as np
from sklearn.model_selection import train_test_split
from jarvis.ai.pkgs.utils import regr_scores
import joblib
# Some of the previously found hyper-parameters
params = parameters_dict()

print(params)


mem = []
for i, j in params.items():
    name = str(i) + ".pkl"
    print(i)
    print(name)
    X, y, jid = get_ml_data(dataset="cfid_3d", ml_property=i)
    lgbm = lgb.LGBMRegressor(
        n_estimators=j["n_estimators"],
        learning_rate=j["learning_rate"],
        num_leaves=j["num_leaves"],
    )
    if "eps" in i:  # fit refractive index, not dielectric constant
        y = np.sqrt(y)
    X_train, X_test, y_train, y_test, jid_train, jid_test = train_test_split(
        X, y, jid, random_state=1, test_size=0.1
    )
    lgbm.fit(X_train, y_train)
    pred = lgbm.predict(X_test)
    joblib.dump(lgbm, name)
    reg_sc = regr_scores(y_test, pred)
    mae = reg_sc["mae"]  # mean absolute error
    madev = mad(y)  # mean absolute deviation
    # mae_over_madev=float(mae)/float(madev)
    mem.append([i, len(X), mae, madev])
    print("Property,Length, MAE,MAD", i, len(X), mae, madev)
    print()
    print()

Post-processing and plotting

We can analyze basic ML metrics such as mean-absolute erros (MAE), RMSE, R2 etc. for regression and ROC AUC, F1 score etc. for classification models.

from jarvis.ai.pkgs.sklearn.regression import regression
from jarvis.ai.pkgs.sklearn.classification import classification
from jarvis.ai.pkgs.sklearn.hyper_params import (
    classification_regression_params,
)
from jarvis.ai.pkgs.utils import get_ml_data, binary_class_dat
from jarvis.ai.pkgs.lgbm.regression import regression as l_regression
from jarvis.ai.pkgs.lgbm.regression import parameters_dict as l_params
from jarvis.ai.pkgs.lgbm.classification import (
    classification as l_classification,
)
from jarvis.ai.descriptors.cfid import feat_names
from lightgbm import LGBMClassifier
import matplotlib.pyplot as plt
property = "exfoliation_energy"
X, Y, jid = get_ml_data(dataset="cfid_3d", ml_property=property)

# Regression
params = l_params()[property]
names = feat_names()
info = l_regression(
    X=X,
    Y=Y,
    jid=jid,
    config=params,
    feat_names=names,
    plot=True,
    save_model=True,
)

# Classification
property = "exfoliation_energy"
tol = 100
models = [LGBMClassifier(n_estimators=10, num_leaves=2)]
info = l_classification(
    X=X,
    Y=Y,
    plot=True,
    models=models,
    preprocess=True,
    save_model=True,
    tol=tol,
)

Developing database

The ML models in terms of joblib, pickle parameters, the descriptors sets and ML predicted properties can be stored in teh JARVIS-API. The descriptrs and the predicted properties can be stored as XML files , while the joblib and pickle files can be saved a blob binary files.